Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Phosphine-gold(I) derivatives of 1,1'-bis(alkynyl)metallocenes: Molecular structures of Fc'(C \equiv CX)₂ [X = Au(PPh₃), SiMe₃] and Au₄{(C \equiv C)₂Fc'}₂(PPh₃)₂ [Fc' = Fe(η -C₅H₄-)₂]

Michael I. Bruce^{a,*}, Martyn Jevric^a, Brian W. Skelton^b, Allan H. White^b, Natasha N. Zaitseva^a

^a Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
^b Chemistry M313, SBBCS, University of Western Australia, Crawley, Western Australia 6009, Australia

ARTICLE INFO

Article history: Received 18 March 2010 Received in revised form 22 April 2010 Accepted 22 April 2010 Available online 29 April 2010

Keywords: Ferrocene Gold cluster Alkynyl X-ray structure

ABSTRACT

Desilylation of Fc'(C=CSiMe₃)₂ [**1**; Fc' = Fe(η -C₅H₄⁻)₂] with LiMe or KOH/MeOH, followed by addition of AuCl(PR₃), afforded Fc'{C=CAu(PR₃)}₂ [R = Ph **2a**, tol **2b**]; the Ru analogue of **2a** was also prepared. The XRD structures of **1** and **2a** are reported. In the presence of Cul, a similar reaction over 2 h afforded the Au₄ cluster Au₄{(C=C)₂Fc'}₂(PPh₃)₂ **3**. The X-ray determined structure of **3** showed a planar centrosymmetric Au₄ rhomb, two opposed Au atoms being σ -bonded to the C=C group, while the other two Au atoms are each η^2 -bonded to the C=C group and a PPh₃ ligand.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

1,1'-Bis(ethynyl)ferrocene, Fc'(C=CH)₂ [Fc' = Fe(η -C₅H₄⁻)₂] is an unstable molecule, being readily oxidised or converted to cyclic ferrocenophanes in the presence of air, water or alcohols. However, the corresponding SiMe₃ **1** or SnMe₃ derivatives are stable [1]. While these properties have limited the application of this diyne as a ligand, the literature contains accounts of complexes derived from Co₂(CO)₈ [1], Ru₃(CO)₁₂ [2], Os₃(CO)₁₂ [3], PtCl₂Ph(PR₃)₂ and related oligomeric materials [4]. The ruthenium–vinylidene complex {Fc'[C (SiMe₃)=C=]}₂RuCl₂(PPrⁱ₃)₂ is also known [5]. In seeking to extend this chemistry, we have made phosphine-gold(I) derivatives of 1,1'bis(ethynyl)-ferrocene and -ruthenocene and have found that formation of a related derivative containing an Au₄ cluster bridging two bis(ethynyl)ferrocene moieties may also occur. This work is described below.

2. Results and discussion

Desilylation of Mc'(C \equiv CSiMe₃)₂ [Mc' = M(η -C₅H₄⁻)₂, M = Fe **1**, Ru] with LiMe followed by addition of two equivalents of AuCl(PR₃)

afforded the expected aurated products $Mc'{C \equiv CAu(PR_3)}_2$ (Mc' = Fc', R = Ph **2a** 75%, tol **2b** 70%; M = Rc', R = Ph **2c** 64%) as orange or light yellow solids, respectively (Scheme 1). These compounds were characterised by elemental analyses and from their mass spectra, which contained $[M + H]^+$ at m/z 1151, 1235 and 1197, respectively. Their IR spectra contain very weak $v(C \equiv C)$ bands between 2102 and 2125 cm⁻¹, while the ¹H and ¹³C NMR spectra contain resonances characteristic of the C₅H₄ and R groups respectively. We found only resonances for the C(sp) attached to the C₅ ring at δ 101.05 (**2a**) and 99.85 (**2c**). In the ³¹P spectrum, the PPh₃ resonances occurred at δ 43.3, 41.6 and 42.85, respectively.

The molecular structures of Fc'($C \equiv CX$)₂ [X = SiMe₃ **1**, Au(PPh₃) **2a**,] have been determined from single-crystal XRD studies. Fig. 1 contains plots of molecule 1 of the silane **1** (upper) and one centrosymmetric molecule of **2a** (lower), with significant bond parameters being presented in the caption. The central ferrocene-1,1'-diyl fragment of **2a** carries a C \equiv CAu(PPh₃) substituent on each ring, disposed in a *trans* arrangement. The bond lengths fall in the expected ranges for Au–P, Au–C(sp) single and C \equiv C triple bonds; average C–C bonds within the C₅ rings [1.42(1) Å] and Fe–C bonds to these rings [2.04(2) Å] do not deserve comment, with the exception of Fe–C(3) (bearing the alkynyl substituent) which is the longest separation at 2.065(11) Å. The P(1)–Au–C(1)–C(2)–C(3) sequence shows the usual small deviations from linearity [2.6, 7.4, 6.3°] probably induced by "crystal packing forces". The common

^{*} Corresponding author. Fax: +61 8 8303 4358. E-mail address: michael.bruce@adelaide.edu.au (M.I. Bruce).

⁰⁰²²⁻³²⁸X/\$ – see front matter @ 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2010.04.026

Scheme 1.

geometries of **1** and **2a** are closely similar, the former containing two molecules in the unit cell, each of which has independent $C_5H_4C\equiv CSiMe_3$ ligands on the central Fe atom.

On a few occasions, similar reactions between 1, LiMe and AuCl (PPh₃), carried out in thf in the presence of CuI, afforded a different orange product, formulated as Au_4 {Fc'(C=C)₂}₂(PPh₃)₂ **3** from a single-crystal X-ray structure determination. A molecule of 3 is shown in Fig. 2, selected bond parameters being collected in the caption. The molecule contains two $Fc'(C \equiv C)_2$ moieties linked by an Au₄(PPh₃)₂ cluster. The central Au₄ cluster forms a centrosymmetric planar rhombus [Au(1)-Au(2, 2') 3.0029(6), 3.2956(6) Å], of which Au(1) is two-coordinate, being σ -bonded to two alkynyl groups [Au(1)-C(1,3') 1.984(10), 1.975(12) Å], while Au(2) is π -bonded to the two C=C triple bonds [Au(2)-C(1,2) 2.208(9), 2.376(10) Å] and also carries a PPh₃ ligand [Au(2)-P 2.238(2) Å]. The ferrocene-1,1'-diyl nucleus serves to hold the C₂ groups apart, controlling the interaction with Au(2) [Au(2)...C(3,4) 2.986(10), 3.360(12) Å]. Au(1) is coplanar with C(1–4) [χ^2 891; δ (Au) 0.003 (1) Ål.

The C(1)–C(2), C(3)–C(4) separations are 1.236(14), 1.212(15) Å, slightly elongated from the normal C(sp)–C(sp) bond length and consistent with a small lowering of bond order as a result of π -bonding to the Au atoms. There is only a slight deviation from linearity along the C(201)–C(2)–C(1)–Au(1)–C(3') and C(401)–C (4)–C(3)–Au(1)–C(1') arrays [angles at individual atoms range between 170.3(1) and 176.2(4)°. These parameters are similar to those found in the gold(I) alkynylcalix[4]crown-6 complex described by Yam and coworkers [6] [cf. values for Au(1)···Au(2) 3.1344(8), 3.2048(8) Å]. The central structure is also related to that found in Ag₂Au₂(C=CPh)₄(PPh₃)₂, obtained from the reaction between Au(C=CPh)(PPh₃) and {Ag(C=CPh)₁_n [7]. As is evident from the Figure, one of the phenyl rings projects over the central plane, with H…Au(1,1',2) distances 3.0₂, 3.2₃, 2.8₇ Å]. It is also of interest to compare the coordination of the alkynyl groups of **3**

with that in Ru₃(μ -H)(μ ₃-CCFc)(CO)₉ **4** [8]. Of note in **4** is the considerably longer coordinated C=C triple bond [1.30(1) Å in **4**, vs 1.236(14) Å in **3**] and the larger departure from linearity of the C (Fc)–C(2)–C(1)–Ru fragment, which has angles at C(1) and C(2) of 152.5(7) and 143.6(8)° [cf. 172.6(9) and 170.5(10)° in **3**]. These differences demonstrate the much greater back-bonding from the Ru₃ cluster to the alkynyl unit compared with that from the gold centres.

In conclusion, while the ferrocene-1,1'-bis(alkynyl) derivatives with SiMe₃ (1) or Au(PR₃) (2) substituents are stable [in contrast to Fc'(C \equiv CH)₂], loss of PPh₃ may occur during the preparation of **2a** in the presence of CuI (which acts as a PPh₃-abstractor) followed by dimerisation to give the Au₄ cluster **3**.

Fig. 1. Plots of (a) molecule 1 of Fc'(C=CSiMe₃)₂ **1.** Selected bond parameters: distances (Å), mean values: C(cp)–C(alkyne) 1.434(4), C=C–Si 1.204(2), C(alkyne)–Si 1.844(4); angles (°) (ranges): C(cp)–C=C 177.20(4), C=C–Si 168.63(3)-177.37(3); (b) a molecule of Fc'{C=CAu(PPh₃)}₂ **2a.** Selected bond parameters: Au–P(1) 2.269(3), Au–C(1) 1.994(10), C(1)–C (2) 1.20(1), C(2)–C(3) 1.44(2) Å, P(1)–Au–C(1) 177.4(3), Au–C(1)–C(2) 172.9(10), C(1)–C(2)–C(3) 173.7(13)°.

3. Experimental

3.1. General

All reactions were carried out under dry nitrogen, although normally no special precautions to exclude air were taken during subsequent work-up. Common solvents were dried, distilled under argon and degassed before use. Separations were carried out by preparative thin-layer chromatography on glass plates $(20 \times 20 \text{ cm}^2)$ coated with silica gel (Merck, 0.5 mm thick).

3.2. Instruments

IR spectra: Bruker IFS28 FT-IR spectrometer. Nujol mull spectra were obtained from samples mounted between NaCl discs. NMR spectra: Varian 2000 instrument (¹H at 300.13 MHz, ¹³C at 75.47 MHz, ³¹P at 121.503 MHz). Samples were dissolved in C₆D₆ contained in 5 mm sample tubes. Chemical shifts are given in ppm relative to internal tetramethylsilane for ¹H and ¹³C NMR spectra and external H₃PO₄ for ³¹P NMR spectra.

Electrospray mass spectra (ES MS): Fisons Platform II spectrometer. Solutions in MeOH were injected via a 10 ml injection loop. Nitrogen was used as the drying and nebulising gas. Chemical aids to ionisation were used as required [9]. Elemental analyses were by CMAS, Belmont, Victoria, Australia, and Campbell Microanalytical Laboratory, University of Otago, Dunedin, New Zealand.

3.3. Reagents

AuCl(PR₃) (R = Ph, tol) [10], Fc'-1,1'-(C \equiv CSiMe₃)₂ **1** [1] and Rc'-1,1'-(C \equiv CSiMe₃)₂ [11] were made by the cited procedures.

3.3.1. Fc'-1,1'-{C=CAu(PPh₃)}₂ 2a

LiMe (0.30 ml, 1.5 M in Et₂O, 0.45 mmol) was added to a solution of Fc'-1,1'-(C \equiv CSiMe₃)₂ (40 mg, 0.11 mmol) in dry thf (25 ml) and the mixture was stirred for 20 h at r.t. Solid AuCl(PPh₃) (155 mg, 0.313 mmol) was then added and the mixture stirred for a further 10 min. After removal of solvent under vacuum, the residue was washed several times with Et₂O and then extracted into benzene.

Fig. 2. Plot of a molecule of $\{Fc'(C\equivC)_2\}_2Au_4(PPh_3)_2$ 3. Selected distances: $Au(1) \cdots Au(2,2')$ 3.0029(6), 3.2956(6), Au(2)-P(1) 2.238(2), Au(1)-C(1,3') 1.984(10), 1.975(12), Au(2)-C(1) 2.208(9), Au(2)-C(2) 2.376(10), C(1)-C(2) 1.236(14), C(3)-C(4) 1.212(15), C(2)-C(201) 1.419(14), C(4)-C(401) 1.419(15) Å. Au(2)-Au(1)-Au(2') 107.31(1), Au(1)-Au(2)-Au(1') 72.69(1), Au(1')-Au(2)-P(1) 91.32(6), Au(1)-Au(2)-P(1) 127.48(7), C(1)-Au(1)-C(3') 176.2(4), Au(1)-C(1)-C(2) 173.0(8), C(1)-C(2)-C(201) 170.3(10)°.

The filtered solution was reduced in volume and crystallisation was induced by addition of a small amount of hexane to give Fc'-1,1'-{ $C \equiv CAu(PPh_3)$ }₂ **2a** as an orange solid (95 mg, 75%). Anal. Found: C, 52.28; H, 3.35. Calcd ($C_{50}H_{38}Au_2FeP_2$): C, 52.20; H, 3.33; *M*, 1150. IR (nujol, cm⁻¹): 2101w, 2052w, 1914w [v(C \equiv C)], 1603w, 1584w. ¹H NMR (C_6D_6): δ 4.28–4.29, 4.76–4.77 (2 × m, 2 × 4H, C₅H₄), 6.88–6.93, 6.99–7.04, 7.19–7.25 (3 × m, 13 + 6 + 11H, Ph). ¹³C NMR (C_6D_6): δ 70.57 (C_{ipso} of Fc), 72.19, 73.72 (C_5H_4), 101.05 (br, Fc– $C \equiv$ C), 128.92, 129.50, 129.65, 130.54, 131.27, 131.66–131.67 (m), 134.73, 134.91 (Ph). ³¹P NMR (C_6D_6): δ 43.3. HR-MS [found (calcd)]: [M + Na]⁺ 1173.111 (1173.102); [M + H]⁺ 1151.128 (1151.120).

3.3.2. *Fc*'-1,1'-{*C*=*CAu*[*P*(*tol*)₃]}₂ **2b**

A solution of KOH (100 mg in 5 ml MeOH, 2.78 mmol) was added to a stirred suspension of AuCl{P(tol)₃} (217 mg, 0.40 mmol) and Fc'(C=CSiMe₃)₂ (70 mg, 0.19 mmol) in dry MeOH (20 ml) and the mixture was stirred for 1 h in an ice-bath. The resulting orange precipitate was collected and washed with cold MeOH to give Fc'-1,1'-{C=CAu[P(tol)₃]} **2b** (163 mg, 70%) as an orange powder. Anal. Calcd ($C_{56}H_{50}Au_2FeP_2$): C, 54.47; H, 4.08; *M*, 1234. Found: C, 52.52; H, 3.97. IR (Nujol, cm⁻¹): v(C=C) 2101w, 2025w, 1914w; 1597s, 1563w. ¹H NMR (C_6D_6): δ 1.93 (s, 18H, Me), 4.31–4.33 (m, 4H, C_5H_4), 4.79–4.81 (m, 4H, C_5H_4), 6.78–6.82 (m, 12H, C_6H_4), 7.27–7.38 (m, 12H, C_6H_4). ³¹P NMR: δ 41.6. ES-MS/*m*/*z*: 1235, [M + H]⁺. HR-MS [found (calcd)]: [M + Na]⁺ 1257.196 (1257.196); [M + H]⁺ 1235.215 (1235.214).

3.3.3. *Rc'-1,1'-{C*=*CAu(PPh₃)}*2 2c

Similarly, LiMe (0.30 ml, 1.5 M in Et₂O, 0.45 mmol) was added to a solution of Rc'-1,1'-(C \equiv CSiMe₃)₂ (46 mg, 0.11 mmol) in dry thf (20 ml) and the mixture was stirred for 20 h at r.t. Solid AuCl(PPh₃) (157 mg, 0.317 mmol) was then added and the mixture stirred for a further 10 min. After removal of solvent under vacuum, the residue was washed several times with Et₂O and then dissolved in benzene. The filtered solution was evaporated to give Rc'-1,1'-{C \equiv CAu(PPh₃)}₂**2c** as a light yellow solid (82 mg, 64%). Anal. Calcd (C₅₀H₃₈Au₂P₂Ru.C₆H₆): C, 52.80; H, 3.48; *M*, 1196. Found: C, 52.40; H, 3.54. IR (nujol, cm⁻¹): 2125w [v(C \equiv C)], 1584w. ¹H NMR (C₆D₆): δ 4.58–4.59, 5.20–5.21 (2× m, 2× 4H, C₅H₄), 6.88–6.94, 7.00–7.04, 7.17–7.24 (3× m, 13 + 6 + 11H, Ph). ¹³C NMR (C₆D₆): δ 73.27, 75.96 (C₅H₄), 73.98 (C_{ipso}), 99.85 (br, Rc–C \equiv C), 128.92, 129.44–129.59, 130.53, 131.25, 131.60, 134.72–134.90 (Ph). ³¹P NMR (C₆D₆): δ 42.9. HR-MS [found (calcd)]: [M + Au]⁺ 1393.050 (1393.050); [M + H]⁺ 1197.090 (1197.090); [Au(PPh₃)₂]⁺ 721.154 (721.148).

3.3.4. $Au_4\{(C \equiv C)_2 Fc'\}_2(PPh_3)_2$ 3

LiMe (0.30 ml, 1.5 M in Et_2O , 0.45 mmol) was added to a solution of Fc'-1,1'-(C=CSiMe₃)₂ (40 mg, 0.11 mmol) in dry thf (10 ml) and the mixture was stirred for 20 h at r.t. A solution of AuCl(PPh₃) (153 mg, 0.309 mmol) and CuI (7 mg, 0.037 mmol) in thf (20 ml) was added and the mixture was stirred for 2 h. After removal of solvent, the residue was extracted into C₆H₆ and purified by chromatography (neutral alumina, benzene). The orange band was collected and crystallised (Et₂O/hexane) to give Au₄{ $(C \equiv C)_2Fc'$ }₂(PPh₃)₂ **3** as an orange solid (55 mg, 56%). Calcd (C₆₄H₄₆Au₄Fe₂P₂): C, 43.27; H, 2.61; M, 1776. Found: C, 46.19; H, 3.00 [satisfactory analyses could not be obtained]. IR (nujol, cm⁻¹): 2125w [ν (C=C)], 1653w (br), 1100s. ¹H NMR (C₆D₆): δ 4.31–4.33, 4.79–4.81 (2× m, 2× 8H, C₅H₄), 6.78–6.82, 7.27–7.38 (2× m, 15 + 15H, Ph). ³¹P NMR (C₆D₆): δ 48.1. EI-MS (MeCN, m/z): 857, $[M - 2Au(PPh_3)]^+$; 721, $[Au(PPh_3)_2]^+$; 575, $[M - 2Au]^{2+}$. X-ray quality crystals were obtained from benzene/ MeOH.

This compound was not formed in the reaction of Fc'{ $C \equiv CAu$ (PPh₃)}₂ with Cul in Et₂O as a potential PPh₃-abstraction agent. Further attempts to obtain the Au₄ cluster resulted in the formation

Iupic I

Crystal data and refinement details.

	1	2a	3
Formula	C ₂₀ H ₂₆ FeSi ₂	C50H38Au2FeP2	C64H46Au4Fe2P2
MW	378.44	1150.5	1776.5
Crystal	Triclinic	Monoclinic	Monoclinic
Space group	P1	$P2_1/c$	$P2_1/n$
a/Å	9.192(2)	6.960(5)	14.242(2)
b/Å	14.196(3)	20.895(5)	12.156(1)
c/Å	16.845(3)	14.365(5)	15.550(2)
$\alpha /^{\circ}$	70.92(2)	90	90
$\beta /^{\circ}$	89.49(1)	94.731(5)	109.436(3)
$\gamma / ^{\circ}$	82.87(2)	90	90
V/Å ³	2060.1	2082.0	2539
$\rho_c/g \text{ cm}^{-3}$	1.220	1.835	2.324
Ζ	4	2	2
$2\theta_{\rm max}/^{\circ}$	69	62	60
μ/mm^{-1}	0.85	7.5	12.2
$T_{min/max}$	0.81	0.84	0.47
Crystal/mm ³	$0.31 \times 0.30 \times 0.08$	$0.16 \times 0.15 \times 0.02$	$0.11 \times 0.09 \times 0.04$
N _{tot}	40 612	21 453	39 203
$N(R_{int})$	16 459 (0.032)	6105 (0.110)	7366 (0.084)
No	9795	4248	4974
$R1 (I > 2\sigma(I))$	0.038	0.063	0.052
wR2 (all data)	0.098	0.17	0.15
T/K	100	100	150

of an insoluble polymeric material either as described above, or by treating the bis compound with CuI, as already described for the Ag₂Au₂ cluster [7].

3.4. Structure determinations

Diffraction data were measured using a CCD area-detector instrument using monochromatic Mo-K α radiation, $\lambda = 0.71073$ Å. N_{tot} reflections were merged to N unique (R_{int} cited) after multiscan absorption correction (proprietary software), N_0 with $I > 2\sigma(I)$; all data were used in the full matrix least squares refinements on F^2 . Anisotropic displacement parameter forms were refined for the non-hydrogen atoms, hydrogen atom treatment following a riding model. Residuals at convergence R1, wR2 are given. Neutral atom complex scattering factors were used; computation used the

SHELXL 97 program [12]. Pertinent results are given in Table 1 and the Figures (which show non-hydrogen atoms with 50% probability amplitude displacement ellipsoids and hydrogen atoms with arbitrary radii of 0.1 Å) and in the captions thereto.

Acknowledgements

We thank Professor Brian Nicholson (University of Waikato, Hamilton, New Zealand) for providing the mass spectra and the ARC for support of this work.

Appendix. Supplementary material

Full details of the structure determinations (except structure factors) have been deposited with the Cambridge Crystallographic Data Centre as CCDC 769762 (**1**), 765 979 (**2a**), 735 019 (**3**). Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: + 44 1223 336 033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

References

- [1] G. Doisneau, G. Balavoine, T. Fillebeen-Khan, J. Organomet. Chem. 425 (1992) 113.
- [2] K. Onitsuka, K. Miyaji, T. Adachi, T. Yoshida, K. Sonogashira, Chem. Lett. (1994) 2279
- [3] L.P. Clarke, J.E. Davies, P.R. Raithby, G.P. Shields, J. Chem. Soc. Dalton Trans. (1996) 4147.
- [4] N.J. Long, A.J. Martin, R. Vilar, A.J.P. White, D.J. Williams, M. Younus, Organometallics 18 (1999) 4261.
- [5] H. Katayama, F. Ozama, Organometallics 17 (1998) 5190.
- [6] S.-K. Yip, E.C.-C. Cheng, L.-H. Yuan, N. Zhu, V.W.-W. Yam, Angew. Chem. Int. Ed. 43 (2004) 4954.
- [7] (a) O.M. Abu Salah, C.B. Knobler, J. Organomet. Chem. 302 (1986) C10;
 (b) O.M. Abu Salah, J. Organomet. Chem. 387 (1990) 123.
- [8] A.A. Koridze, V.I. Zdanovich, A.M. Sheloumov, V.Yu. Lagunova, P.V. Petrovskii, A.S. Peregudov, et al., Organometallics 16 (1997) 2285.
- [9] W. Henderson, J.S. McIndoe, B.K. Nicholson, P.J. Dyson, J. Chem, Soc. Dalton Trans. (1998) 519.
- [10] M.I. Bruce, B.K. Nicholson, O. bin Shawkataly, Inorg. Synth. 26 (1989) 325.
- [11] M.I. Bruce, M. Jevric, G.J. Perkins, B.W. Skelton, A.H. White, J. Organomet, Chem. 692 (2007) 1757.
- [12] G.M. Sheldrick, Acta Crystallogr. A64 (2008) 112.